Alanine repeats influence protein localization in splicing speckles and paraspeckles
نویسندگان
چکیده
Mammalian splicing regulatory protein RNA-binding motif protein 4 (RBM4) has an alanine repeat-containing C-terminal domain (CAD) that confers both nuclear- and splicing speckle-targeting activities. Alanine-repeat expansion has pathological potential. Here we show that the alanine-repeat tracts influence the subnuclear targeting properties of the RBM4 CAD in cultured human cells. Notably, truncation of the alanine tracts redistributed a portion of RBM4 to paraspeckles. The alanine-deficient CAD was sufficient for paraspeckle targeting. On the other hand, alanine-repeat expansion reduced the mobility of RBM4 and impaired its splicing activity. We further took advantage of the putative coactivator activator (CoAA)-RBM4 conjoined splicing factor, CoAZ, to investigate the function of the CAD in subnuclear targeting. Transiently expressed CoAZ formed discrete nuclear foci that emerged and subsequently separated-fully or partially-from paraspeckles. Alanine-repeat expansion appeared to prevent CoAZ separation from paraspeckles, resulting in their complete colocalization. CoAZ foci were dynamic but, unlike paraspeckles, were resistant to RNase treatment. Our results indicate that the alanine-rich CAD, in conjunction with its conjoined RNA-binding domain(s), differentially influences the subnuclear localization and biogenesis of RBM4 and CoAZ.
منابع مشابه
Splicing speckles are not reservoirs of RNA polymerase II, but contain an inactive form, phosphorylated on serine2 residues of the C-terminal domain.
"Splicing speckles" are major nuclear domains rich in components of the splicing machinery and polyA(+) RNA. Although speckles contain little detectable transcriptional activity, they are found preferentially associated with specific mRNA-coding genes and gene-rich R bands, and they accumulate some unspliced pre-mRNAs. RNA polymerase II transcribes mRNAs and is required for splicing, with some ...
متن کاملParaspeckles A Novel Nuclear Domain
BACKGROUND The cell nucleus contains distinct classes of subnuclear bodies, including nucleoli, splicing speckles, Cajal bodies, gems, and PML bodies. Many nuclear proteins are known to interact dynamically with one or other of these bodies, and disruption of the specific organization of nuclear proteins can result in defects in cell functions and may cause molecular disease. RESULTS A proteo...
متن کاملWnt sends mixed signals in the skin
Paraspeckles may provide stress relief T he enigmatic nuclear structures known as paraspeckles may only be necessary during times of stress, Nakagawa et al. report. Discovered in 2002, paraspeckles stick close to the larger and betterknown splicing speckles that help edit mRNA. Paraspeckles harbor RNA and protein, but researchers aren’t sure what they do. To help pin down their function, Nakaga...
متن کاملLocalization of poly(A)-binding protein 2 (PABP2) in nuclear speckles is independent of import into the nucleus and requires binding to poly(A) RNA.
The nuclei of mammalian cells contain domains, termed nuclear speckles, which are enriched in splicing factors and poly(A) RNA. Although nuclear speckles are thought to represent reservoirs from which splicing factors are recruited to sites of transcription and splicing, the presence of poly(A) RNA in these structures remains enigmatic. An additional component of the speckles is poly(A) binding...
متن کاملIn vivo analysis of NHPX reveals a novel nucleolar localization pathway involving a transient accumulation in splicing speckles
The NHPX protein is a nucleolar factor that binds directly to a conserved RNA target sequence found in nucleolar box C/D snoRNAs and in U4 snRNA. Using enhanced yellow fluorescent protein (EYFP)- and enhanced cyan fluorescent protein-NHPX fusions, we show here that NHPX is specifically accumulated in both nucleoli and Cajal bodies (CBs) in vivo. The fusion proteins display identical localizatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 42 شماره
صفحات -
تاریخ انتشار 2014